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ACCURATE AND EFFICIENT 
RECONSTRUCTION OF DISCONTINUOUS FUNCTIONS 

FROM TRUNCATED SERIES EXPANSIONS 

KNUT S. ECKHOFF 

ABSTRACT. Knowledge of a truncated Fourier series expansion for a discontin- 
uous 2n-periodic function, or a truncated Chebyshev series expansion for a 
discontinuous nonperiodic function defined on the interval [-1, 1], is used in 
this paper to accurately and efficiently reconstruct the corresponding discontin- 
uous function. First an algebraic equation of degree M for the M locations of 
discontinuities in each period for a periodic function, or in the interval (-1, 1) 
for a nonperiodic function, is constructed. The M coefficients in that algebraic 
equation of degree M are obtained by solving a linear algebraic system of 
equations determined by the coefficients in the known truncated expansion. By 
solving an additional linear algebraic system for the M jumps of the function 
at the calculated discontinuity locations, we are able to reconstruct the discon- 
tinuous function as a linear combination of step functions and a continuous 
function. 

1. INTRODUCTION 

Spectral methods are in many cases known to work extremely well for prob- 
lems involving smooth functions [4, 9]. For problems involving functions of 
finite regularity, however, and in particular for problems involving discontin- 
uous functions, there are still a number of issues to be settled. In particular, 
it is well known that application of traditional spectral methods to nonlinear 
hyperbolic partial differential equations will often lead to numerical instabil- 
ities unless special measures are taken. The main reason for this is that the 
solutions of such equations may develop discontinuities (shocks) even for cases 
with smooth initial data. 

The basic idea in spectral methods is to approximate all functions involved by 
truncated series expansions with respect to an a priori chosen sequence of func- 
tions. For problems involving periodic boundary conditions, truncated Fourier 
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series expansions are widely used here, while truncated Chebyshev series expan- 
sions, as well as expansions in terms of various other types of Jacobi polyno- 
mials, are used for problems involving nonperiodic boundary conditions. The 
approximations obtained by such truncated series expansions for discontinuous 
functions are highly oscillatory, and the oscillations are particularly bad close to 
the discontinuities. This oscillatory behavior of the truncated series expansions 
near a discontinuity is known as the Gibbs phenomenon (at least for Fourier 
series) and could be regarded as the major cause of the problems connected with 
application of spectral methods to problems involving discontinuous functions. 

Different ways of curing this deficiency of spectral methods have been sug- 
gested in the literature. Most of the suggested recipes are intended to eliminate, 
or at least considerably reduce, the oscillatory behavior of the truncated expan- 
sions by various ways of filtering. The idea is that more accurate approximations 
for the proper nonoscillatory discontinuous functions can be constructed that 
way. Traditionally, the problem has therefore been looked upon as the problem 
of designing a suitable filter for this purpose. 

Many different ways of filtering have been suggested and studied in consid- 
erable detail in the literature cited in the reference list. Even though they often 
produce acceptable results, most of the suggested filtering techniques do not 
seem to take advantage of the full power of the spectral methods. At the same 
cost, they presently seem only, at best, to be able to produce results of accu- 
racy comparable to those obtained by traditional finite difference methods for 
problems involving discontinuous functions. 

The exceptions to this rule are the promising results obtained by utilizing step 
functions in the reconstruction of discontinuous functions, an approach which 
was initiated by Gottlieb et al. [8], and which has been further developed in 
[1, 2, 3, 7]. That approach is in accordance with the idea introduced by Lax 
[12], namely that the oscillatory behavior obtained by a high-order method like 
a spectral method should contain enough information for us to be able to re- 
construct the proper nonoscillatory discontinuous function by a postprocessing 
filter. 

The idea of introducing step functions was originally only utilized as a cos- 
metic postprocessing operation [1, 2, 7, 8], intended to display the relevant 
physical results obtained by the calculations at a few preselected values of time. 
Throughout the integration of the governing partial differential equations in 
time, more traditional filtering was applied. Those filters, in that context, were 
only applied in order to stabilize the calculations, however, and not as in various 
other approaches to eliminate the Gibbs oscillations. 

In the recent work [3] an approach is attempted where the integration pro- 
cess and the postprocessing are considered as a unity, with the intention to 
improve upon the results obtained by application of the underlying ideas in 
[1, 2, 7, 8]. The results obtained in [3] are quite promising, but are in con- 
trast to earlier works based on a reconstruction of the discontinuous functions 
at every timestep, utilizing step functions. In [3] only cases with at most one 
discontinuity present in each period are considered. For such cases the recon- 
struction is a relatively straightforward matter. 

When there is more than one discontinuity present in each period, however, 
effective reconstruction of discontinuous functions utilizing step functions is no 
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longer trivial, and may therefore easily turn out to be prohibitively expensive if 
one intends it to be applied often. In order to extensively apply such reconstruc- 
tions, an efficient and accurate algorithm is therefore clearly needed. We have 
not seen published details of any such algorithm in the literature before. In this 
paper we shall therefore establish algorithms which are both accurate and effi- 
cient, and the reconstruction will be described both for truncated Fourier series 
expansions and for truncated Chebyshev series expansions. The algorithms will 
be based on the so-called Prony method [1 1, 16], which recently also has been 
utilized in various other application areas for Fourier analysis (see [14] and the 
references quoted there). 

The algorithms for the reconstruction of discontinuous functions which we 
are going to describe in this paper are based on knowledge of accurate ap- 
proximations for the exact Fourier or Chebyshev coefficients. If sufficient care 
is taken, however, the algorithms are still applicable in connection with the 
spectral collocation method, which therefore normally will be utilized for their 
practical implementation. The presentation will be given with such implemen- 
tations in mind, and will therefore [4] involve mathematically unconventional, 
odd-looking, summation limits for the occurring truncated Fourier series. 

2. FUNDAMENTALS 

To a Riemann integrable complex-valued 27r-periodic function u(x) we may 
associate a Fourier series 

+00 

( 1 ) ~~~~U(X) E f ike'x 

k=-oo 

where 

(2) Uk = 2LJu(x)e-ikxdx, k = 0, +1, +2. 

For any given even integer N > 0, we shall define the Nth-order truncated 
Fourier series associated with the 27r-periodic function u(x) by 

N/2-1 

(3) PNU(X) = Z uke. 

k=-N/2+1 

As is well known [9, 18], the error involved when we approximate u(x) by 
the truncated Fourier series expansion (3) depends strongly on the smoothness 
of the function u(x). We shall in this paper limit our discussion to functions 
u(x) which are piecewise smooth on [-7r, 71]. If we assume in addition that 
u(x) is everywhere continuous and has continuous derivatives of order p = 
1, 2, ... , m - 1, it can be shown [9, 18] that 

(4) Uk = O(IkK-(m+l)) ask -+ +00, 

and the best available global estimate is 

(5) max Iu(x) - PNu(x)I = O(N-m) as N -+ oc. 
-71<X<11 
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At a fixed point x where u(m) (x) is continuous, however, it can be shown that 

(6) u(x) - PNU(X) = O(N-(m+l)) as N -4 xo. 

The above estimates give an important part of the explanation for why spec- 
tral methods work so well when all functions involved are smooth. When u(x) 
is discontinuous, however, the estimates (4), (5), and (6) hold with m = 0. 
As a global approximation for the function u(x), (3) cannot therefore be ex- 
pected to be particularly accurate. In fact, the Gibbs phenomenon involving 
large oscillations must be present, and it is known [4, 9] that the overshoot for 
the truncated Fourier series (3) is asymptotically equal to 0.08949 times the 
magnitude of the jump of the function at the discontinuity when N -x 00. 

One way of introducing the Chebyshev polynomials Tk(x), k = 0, 1, ... 

is to define them on the interval -1 < x < 1 by the relations 

(7) Tk(x) = cos(kO), 0 = arccos x. 

Consider now an arbitrarily given complex-valued function u(x) which is 
piecewise smooth on the interval -1 < x < 1 . If we define U(0) = u(cos 0), 
it then clearly follows that U(6) is an even 2Xr-periodic function which is 
piecewise smooth on -it < 0 < 7. Hence from (2) we get that U-k = Uk, 
k = 1, 2, ... , in the Fourier series (1) associated with U(6), which therefore 
can be written as a pointwise convergent Fourier cosine series 

00 

(8) 2[U(6+) + U(0-)] = Z ak cos(kO), 
k=O 

where the coefficients are given by a0 = UO, ak = 2Uk, k = 1,2.... 
From (7) it now follows by substitution of 0 = arccos x into (8) that for 

-1 < x < 1 we have 
00 

(9) 2[U(X+) + U(X-)] = ak Tk (x). 
k=0 

At the endpoints of the interval, x = -1 and x = 1, it is not difficult to see 
that the sum of the Chebyshev series on the right-hand side in (9) must equal 
u (- 1 +) and u ( 1 -) , respectively. 

For any given integer N > 0, we define the Nth-order truncated Chebyshev 
series associated with the function u(x) by 

N 

(1 0) PNU(X) = ak Tk (x). 
k=O 

From the results we have referred to above for Fourier series, it is clear 
that the rate of convergence for Chebyshev series must depend strongly on the 
smoothness of the function u(x) . If in addition to the assumption of piecewise 
smoothness we also assume that u(x) is continuous and has continuous deriva- 
tives of order p = 1, 2, ..., m- 1 for -1 < x < 1, it can be readily seen 
that U(6) = u(cos 0) is everywhere continuous and has continuous derivatives 
of order p = 1, 2, ... , m - 1 with respect to the variable 0 . Hence, it follows 
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from (4) that in this case 

(11) ak=O(k-(+) s k -+oo. 

Similarly, it follows from the above assumptions and (5) that 

(12) max Iu(x) - PNu(x)I = O(N-m) as N x0. 
-1<x<1 

Finally, it follows from the above assumptions and (6) that if we let x be a 
fixed point in [-1, 1] where u(m) (x) is continuous, then we have that 

(13) u(x) - PNu(x) = O(N-(m+l)) as N x-+ oo. 

3. RECONSTRUCTION FROM TRUNCATED FOURIER SERIES 

Now let u(x) be a 27r-periodic function which is piecewise smooth on 
[-7r, 71]. Suppose that u(x) is known to be discontinuous, but that we do 
not know the actual form of the function u(x). Suppose, however, that we 
do know the Nth-order truncated Fourier series (3) associated with the func- 
tion u(x) for some N; i.e., assume that the numbers ik are known for 
k = O, ?1, +2, ...,+(N/2-1). 

The latter assumption may at first glance seem to be of limited value since 
we know from the results referred to in the previous section that the truncated 
Fourier series (3) associated with a discontinuous function u(x) must be highly 
oscillatory and therefore does not readily provide any accurate approximation 
for u(x). The problem we would like to address then, is the problem of deter- 
mining a good approximation for the function u(x) solely from knowledge of 
the Fourier coefficients Zk for k = 0, +1 , +2, ... , +(N/2 - 1). 

A prototype 27r-periodic function which is piecewise smooth on [-7r, 7z], 
and which has one- discontinuity in each period, is given by the 27r-periodic 
extension of the function 

1 (-7r-x) if -7r<x<fl, 
(14) V(x; 1)={ 

1 (fl + - X) if < <x?<7, 

where fi is a parameter at our disposal such that - 7r < fl < n. The step 
function (or sawtooth function) (14) has a jump discontinuity of magnitude + 1 
at x = fl .1 The Fourier coefficients (2) associated with (14) are given by 

(15) Vo(f3)=0, J/(ft)2=l.e k= + ?+2. 

The assumption that the function u(x) is piecewise smooth on [-7r, 57] im- 
plies that u(x) may have a finite number, M say, of jump discontinuities on 
[-7r, j], but that u(x) is otherwise smooth. Thus the assumption that the 
discontinuous 27r-periodic function u(x) is piecewise smooth on [-7r, 7(] is 
clearly equivalent to the assumption that u(x) can be written in the following 

IIn this paper we introduce the convention that the function values are disregarded at the points 
where a piecewise smooth function is discontinuous. 
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way for some integer M > 1: 
Al 

(16) u(x) = v (x) + ZA A V(x; yj), 
j=1 

where v (x) is some continuous 27r-periodic function which is piecewise smooth 
on [-7r, n], V(x; yj) is given by (14) with yj = y, and Aj, yj are some 
constants for j = 1, ..., M. 

Clearly, the points x = yj, j = 1, ..., M, are the locations of the dis- 
continuities for the function u(x) given by (16) in the period [-7r, 7r), and 
Aj are the associated jumps. The problem we are now going to study is 
the problem of determining good approximations for the function v(x) and 
the constants Aj, yj in (16) solely from knowledge of the numbers Uk for 
k = 0, +1, +2, ... , ?(N/2 - 1). In the following we shall assume that the 
integer M > 1 is known. 

From (15) it follows that the Fourier coefficients (2) associated with (16) are 
given by fio = 60 and 

j=M 
(17) fik = 'Ok + - ik Aje- ikyj, k = ?1 , ?r2,.. 

If we introduce the notation 

(18) Ck = 27rik(ik-i'k) , k = ?1 , ?2, ... . 

then (17) can be written in the following way: 
M 

(19) EAje ikyj = Ck, k = J1, +2. 
j=1 

If we now seek an algebraic equation of degree M, 

(20) zM +XlzM-1 +X2ZM-2+...+XM-lz+XM=0, 

with roots zj = e-iyj, j = 1, ... , M, we find as a consequence of (19) and 
Prony's method [16] (as presented in [11] or [14]) that the coefficients Xj, i = 
1, ... , M, in (20) must satisfy the following inhomogeneous linear algebraic 
equation: 

(21) Ck + Ck-1X1 + Ck-2X2 + *+ Ck-MXM = ? 

for every integer k 54O, 1, 2, ... ,M. 
Unfortunately, the coefficients Ck, .. . , Ck-m in (21) are not a priori known, 

since by (18) they depend on the unknown function v (x) . By assumption, how- 
ever, the function v(x) in (16) is continuous and piecewise smooth on [-7r, j], 
hence by (4) we have 

(22) Ok = O(IkK)-2 askk ?oa. 

On the other hand, with M > 1, the function u(x) is discontinuous, and 
consequently by (4) we have 

(23) Uk = O(Ikl-K) as k -+oo. 
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It is also well known [18] that the decay of the Fourier coefficients Uk as 
k -+ +oo is not faster than that shown in (23) for discontinuous 27r-periodic 
functions u(x) which are piecewise smooth on [-7r, 71]. 

It is the difference in the asymptotic behavior of the Fourier coefficients 
associated with a discontinuous function (23), compared to the behavior of the 
coefficients for a continuous function (22), which now forms the basis for our 
reconstruction of discontinuous functions of the form (16) from the known 
truncated Fourier series. In fact, from the above estimates we get as k -+ +00 

(24) ~~~~def 
(24) ~Ck = 27rikfik = 0(1), 27riki = 0(IkK1). 

Consequently, from (18) it follows that 

(25) Ck = Ck+O(Ikl-I) as k-,+o, 
and for 1k I sufficiently large we can therefore in equation (21) approximate Ck 

by Ck . We note that the quantities Ck are directly determined by the known 
Fourier coefficients ik by (24). Furthermore, we note that the error involved 
by that approximation depends on the actual smoothness of the function v (x), 
and may therefore in practice be much more favorable than the estimate given 
in (25). 

Usually any given set of M equations (21), obtained for M different values 
of k, will be linearly independent if M is the correct number of discontinuities 
in each period for the function u(x). In special cases, however, it can be 
seen that there is a slight possibility that the obtained system may be linearly 
dependent. It is for example a straightforward calculation to show from (19) 
for the case M = 2 that the determinant associated with the pair of equations 
(21) obtained for the two different values k = p and k = q is given by 

(26) AiA2(eiYl - eiY2)[e-i(PYj+qy2) - e-i(qy,+PY2)] 

Thus, as expected, the pair of equations (21) obtained for k = p and k = q 
will usually be linearly independent if AI $A 0, A2 $A 0, and e'Y1 $ e'Y2, i.e., if 
we really have M = 2. In fact, the only possibility that the expression (26) can 
vanish when M = 2 is that we have 

(27) (p - q)(yv - Y2) = 2n7r 

for some n = 0, +1, +2, +3, .... Unless p = q + 1, (27) can clearly be 
satisfied for special values of yl 54 Y2. For the general case where the function 
u(x) has exactly M discontinuities in each period, it is not difficult to show 
from (19) that we will always obtain a linearly independent system if we choose 
a system (21) corresponding to M consecutive values of k . 

Summing up the above discussion, we may conclude that an approximate 
equation (20) for the M discontinuity locations will be obtained if the coef- 
ficients Xj, j = 1, ..., M, are calculated by the linear system of algebraic 
equations 

(28) Ck + Ck-lXI + Ck-2X2 +... + Ck-MXM = 0, 

for k = N/2 - M, N/2 - M + 1, ..., N/2 - 1, when N > 4M. With the 
solution Xj, j = 1, ... , M, of (28) substituted, we then solve (20). From the 
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M roots z1, j = 1, .I.., M, thus found, we calculate the uniquely determined 
approximations for the M discontinuity locations yj, j = 1, ..., M, on the 
interval [-it, 7r) by the equations 

(29) e-iy= j= 1,... M. 

Next, approximations for the M discontinuity jumps A1, i = 1, ... M, 
are calculated by the following linear system of M algebraic equations obtained 
from (19) and (25): 

M 

(30 E je -ikyj = , k = N12- M, N12- M+l1,. .., N12 -1. 
j=1 

Finally, an approximate function v (x) in (16) is determined by an Nth- 
order truncated Fourier series (3) with Fourier coefficients iOk given by 

M 

(31) Vk = k - 2irik_ Aje-ikyj 

for k = + 1 ?+2, ..., +(N/2- 1), while io = io. 
This completes the reconstruction of the discontinuous 27r-periodic function 

u(x) of the form (16). We would like to add, however, that it is possible to 
improve upon the above reconstruction (i.e., make it more robust and more 
accurate) if we also take into consideration the alternative equations obtained 
for k negative (1k I should still be chosen as large as possible). The resulting 
overdetermined systems of properly weighted linear algebraic equations can for 
instance be handled by the least squares method [6]. We shall not consider such 
modifications further here, but only mention that the most obvious improve- 
ments will be seen in the determination of the M discontinuity jumps Aj, 
j= 1,... ,M. 

4. TRUNCATED CHEBYSHEV SERIES 

Now let u(x) be an arbitrarily given piecewise smooth function on the inter- 
val [-1, 1]. Suppose furthermore that u(x) is known to be discontinuous, but 
that we do not know the actual form of the function u(x). Suppose, however, 
that we do know the Nth-order truncated Chebyshev series (10) associated with 
it for some N; i.e., the numbers ak associated with the function u(x) are as- 
sumed to be known for k = 0, 1, 2, ... , N. The problem we would like to 
address in this section is the problem of determining a good approximation for 
the function u(x) solely from knowledge of those Chebyshev coefficients ak 

in an analogous way as we did for Fourier series in the preceding section. 
From the discussion in ?2 and the above assumptions it clearly follows that for 

each discontinuity of the function u(x) in the interval (-1, 1), the associated 
2Xr-periodic even function U(6) = u(cos 0) is discontinuous at two different 
points in the interval (-7r, 7r) lying symmetric with respect to 0 = 0 and with 
jumps of opposite signs, but with the same magnitude, at those two points. 
From the discussion in ?2 we furthermore know that the function U(6) must 
be piecewise smooth on -7 < 0 < 7r, and that the Fourier series (1) associated 
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with U(6) can be written as the pointwise convergent Fourier cosine series (8) 
which is directly obtained from the Chebyshev series for u(x). 

From the given Nth-order truncated Chebyshev series expansion (10) asso- 
ciated with the function u(x), the (2N + 2)th-order truncated Fourier series 
expansion (3) for the associated even function U(6) can therefore readily be set 
up. If M is the number of discontinuities for the function u(x) on the inter- 
val (-1, 1), we may consequently apply the method described in the preceding 
section in order to reconstruct the function U(6) with 2M discontinuities on 
the interval (-it, it) in the form 

M 
(32) U(6) = 1(D) + E Aj[V(6; -aj) - V(6; aj)], 

1=1 

where 1(D) is some continuous 2it-periodic even function which is piecewise 
smooth on [-it, 7i], V(6; +aj) isgivenby(14), and Aj, aj are some constants 
for i = 1, ... , M. By introducing the substitution 0 = arccosx into (32), we 
then obtain a reconstruction for the function u(x) on the interval [-1, 1] . 

The above procedure for reconstruction of discontinuous functions from 
truncated Chebyshev series expansions is both accurate and quite efficient in 
practical applications. We do note, however, that in the procedure we actually 
calculate each discontinuity location twice. In fact, a1 and -aj are calculated 
as two different discontinuity locations although they both correspond to the 
same discontinuity location x = cos aj for the function u(x) . It may therefore 
be worthwhile to look for a more direct approach to the reconstruction of the 
function u(x) in this case. 

From (32) we see that a natural prototype 2it-periodic even function which is 
piecewise smooth on [-it, 7r] and which has two discontinuities in each period, 
is given by the function 

(33) W(6; a)= V(6; -a)- V(6; a), 

where V(6; ?a) is given by (14), and where a is a parameter at our disposal 
such that 0 < a <ir. From (14) and (33) it readily follows that 

I 
,la if -7r < 0 < -a, 

(34) W(O; a) 1 la if -a < 0 < a, 

-a if a < 0 <?r, 

and from (15) it is not difficult to show that the Fourier series for the function 
W(6; a) is given by 

(35) 
1 

[W( 6+; a) + W( 6-; a)] = 2 sin(ka) cos(kO). 
k=1 

Let us now, for the time being, suppose that the given piecewise smooth 
function u(x) is known to be discontinuous with only one discontinuity in 
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the interval (-1, 1). The associated even function U(O) is then discontinu- 
ous with two discontinuities in each period. This is clearly equivalent to the 
assumption that U(6) can be written as 

(36) U(6) = (D(6) + AW(6; a), 

where 1(D) is some continuous 27r-periodic even function which is piecewise 
smooth on [-it, 7r], W(6; a) is given by (34), and A, a are some constants. 
From (34), (36) it is clear that 0 = -a and 0 = a are the locations for the two 
discontinuities of U(6) on the interval (-7r, 7r), and A is the magnitude of 
the jumps of U(6) at those two points. 

If we introduce the substitution 0 = arccos x into (36), we obtain for -1 < 
x< 1 

(37) u(x) = +(x) + Aw(x; a), 

where u(x) is the given discontinuous function, q(x) is the continuous func- 
tion which is uniquely defined on the interval [-1, 1] by the requirement 
that q(cos6) = 1(6), and w(x; a) is the discontinuous function which is 
uniquely defined on the interval [- 1 , 1 ] by the requirement that w (cos 0; a) = 

W(O; a). It is readily seen from (34) that 

(-p a if -1 < x < cosa, 
(38) w(x; a) = 

I - la if cosa<x< 1. 

From the discussion in ?2 and (24) it follows that 

(39) Ck = -Ck = 27rikUk = 7(ikak, k = 1, 2. 

As a consequence, it is easily seen that the system of equations (28) obtained for 
M = 2 with k = N and k = -N + 2 always has the solution X2= 1, which 
actually is the exact solution since X2= e-iyle-iY2 by (20) and Yi = -a, Y2 = a 
for the case considered here. Assuming that CN_1 $ 0, we furthermore obtain 
from (28), (39) that 

(40) cosa XI I~CN + CN-2 _ NN +(N-2)aN-2 (40) 
cO~~ay~ 2aiNl I 2(N-1)aINl 

which is easily found to be in accordance with the two roots of the equation 
(20) for M = 2. Thus, from (37), (38) it is therefore clear that (40) gives an 
approximate location for the discontinuity of the function u(x) on the interval 
[-1, 1] when u(x) has only one discontinuity. 

As we shall show in the following, it is possible in a similar way to arrive 
at simplified approximate equations for the locations of the discontinuities for 
an arbitrarily given piecewise smooth function u(x) defined on [-1, 1] by a 
suitable modification of the approach described in the preceding section. Let 
us therefore now assume that we know the Chebyshev coefficients ak for k = 
0, 1, 2, ... , N for some sufficiently large N for the discontinuous function 
u(x), but that we do not know the actual form of u(x). 

The assumption that the piecewise smooth function u(x) is discontinuous 
on (-1, 1) is clearly equivalent to the assumption that u(x) can be written in 
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the following way for some integer M > 1: 

M 
(41) u(x) = +(x) + i, Ajw(x; aj), 

j=1 

where q(x) is some piecewise smooth function which is continuous on [-1, 1], 
w(x; aj) is given by (38), and Aj, aj are some constants for j = 1, ... , M. 
If we introduce the substitution x = cos6 into (41) and apply the notation 
introduced earlier in this section, we obtain 

M 
(42) U(6) = 1(O) + Z Aj W(6; aj). 

j=1 

The Fourier coefficients (2) associated with (42) are in view of (35) given by 

M 
ak 1 M 

(43) Uk =U&- = dk + ZA sin(kaj), k = 1,2,... 
2 71* 

j=1 

and U0 = (D = ao. If we introduce the notation 

(44) Ek= 7k(Uk-Dk), k = 1,2,... 

then (43) can be written in the following way: 

M 

(45) Z Aj sin(kaj) = Ek, k = 1, 2. 
j=1 

The function q$(x) in (41) is assumed to be continuous and piecewise smooth 
on [-1, 1], hence by (11) we have 

(46) ok = O(IkK) as k xo. 

With M > 1, the function u(x) is discontinuous, hence by (11), 

(47) Uk = 0(1kj-1) as k -x. 

As in the preceding section, it is this difference in behavior (47) of the Fourier 
coefficients associated with a discontinuous function, compared to the behavior 
(46) of the coefficients for a continuous function, which forms the basis for 
the reconstruction of discontinuous functions of the form (41) from the known 
truncated Chebyshev series. In fact, for k sufficiently large, we can in view of 
the above estimates expect that 

Ek -1k7kkak def~kO1 
(48) Ek e 7rk~ k 2 - Ek = 0(l) as k-o. 

This together with (45) gives us approximate equations for the quantities Aj 
and aj. If we consider (45), (48) for a sufficient number of sufficiently large 
values of k, we may therefore be able to determine approximate values for 
Aj and aj for j = 1, ... , M. We shall now describe how this can be most 
economically done in practice. 
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For M = 1 a direct calculation for (45) easily shows that the following 
identity holds for every k = 2, 3, ...: 

(49) 2Ek cosa = Ek+l + Ek-l, 

which clearly gives the approximate equation (40) for the location of the dis- 
continuity when the approximation (48) is introduced. In order to avoid prob- 
lems connected with the possible exceptional case where EN-1 = 0, and thus 
get a robust algorithm, we may here calculate the location of the discontinuity 
x = cos a as the least squares solution [6] of the following two linear algebraic 
equations: 

(50) 2EN- Icosa = EN + EN-2, 2EN-2cosa = EN-1 + EN-3 

For M = 2 direct calculations for (45) similarly show that the following 
identities hold: 

(51) Ek= Al sin(kal) + A2sin(ka2), k = 1, 2,3, ... 

(52) Qk - 
2(Ek+I 

+Ek-1) 

=AI sin(kal) cosa, + A2 sin(ka2) cosa2, k = 2, 3,4, . .. 

(53) Rk -~ (Qk+l + Qk-1) 

Al sin(kal) cos2 a, + A2 sin(ka2) cos2 a2, k = 3, 4, 5. 

From (51), (52), and (53) it now easily follows that for k = 3, 4, 5, 

(54) Ek cosal COSa2 - Qk[cosal + Cosa2l + Rk = 0. 

This equation (54) plays essentially the same role here as the equation (21) 
played in the preceding section for the case M = 2. In fact, if we seek an 
algebraic equation of degree 2, 

(55) z2+ Xz + Y =0 

with roots z1 = cos a, and Z2 = cosa2, we see from (54) that the coefficients 
X , Y in (55) must satisfy the inhomogeneous linear algebraic equation 

(56) EkY+QkX+Rk=0 

forevery k=3,4,5,.... 
Usually, but unfortunately not always, a given pair of equations (56) for 

X, Y, obtained for two consecutive values of k = 3, 4, 5, ... , will be lin- 
early independent if we really have M = 2. In order to avoid the possible linear 
dependence for the exceptional cases and thus get a robust algorithm, we have 
found it necessary to consider the enlarged, usually overdetermined system of 
four equations (56), obtained for four consecutive values of k = 3, 4, 5, .... 
In view of (48), we therefore see that an approximate equation for the two 
discontinuity locations (55) will be obtained if the coefficients X, Y are deter- 
mined as the least squares solution [6] of the following linear system of algebraic 
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equations: 

(57) EkY+ QkX+Rk =0, k = N- 2, N- 3, N- 4, N-5, 

where in accordance with (48), (52), and (53) we have introduced the notation 
- def I 

- - L~~ef I 
- 

(58) Qk = -(Ek+1 +Ek-1) Rk - 2(Qk+1 + Qk-1)- 

With the solution X, Y of (57) substituted, we then solve (55). The two 
roots z1, Z2 thus found, are then the uniquely determined approximations for 
the two discontinuity locations xi = cos aI, x2 = cosa2 in the interval (-1, 1) 
for the function u(x). From (48), (58) we see that the eight largest available 
Chebyshev coefficients aN-7, ... , aN are utilized in order to set up the equa- 
tions (55), (57) for the determination of those two discontinuity locations. 

In a similar way we expect that by utilizing the 4M largest available Cheby- 
shev coefficients, it is possible to arrive at an algebraic equation of degree M 
for the M discontinuity locations for the arbitrarily given piecewise smooth 
function u(x) on [-1, 1]. Since the procedure for this construction should 
be clear from the above discussion, we restrict ourselves in the following to de- 
scribing it for the case where M = 3, and introduce in addition to (48), (58) 
the notation 

(59) Sk -e 2(Rk+l + Rk-l)- 

The quantities X, Y, Z are then determined as the least squares solution [6] 
of the following linear system of algebraic equations: 

(60) EkZ + Qk&Y + RkX + Sk = 0 

for k = N- 3, N- 4, ..., N- 8, and this solution is substituted into the 
equation 

(61) Z3 + XZ2 + YZ + Z = 0. 

The three roots z1, Z2, Z3 of equation (61) are then the uniquely determined 
approximations for the three discontinuity locations x1 = cos aI, x2 = cos a2, 
X3 = cos a3 for the function u(x) on the interval (- 1, 1) . 

When the M approximate discontinuity locations for the arbitrarily given 
piecewise smooth function u(x) have been determined on (-1, 1) by the pro- 
cedure described above, the associated values of the quantities a1, ... , am are 
uniquely determined on the interval (0, 7r). Hence (45), (48) give the follow- 
ing approximate, overdetermined, linear system of algebraic equations for the 
jumpsA1,... , AM: 

(62) Z Aj sin(kaj) = Ek, k = N - 2M + 1,..., N 
j=l 

for which we again determine the least squares solution [6]. Finally, an approx- 
imate function q(x) in (41) is given by an Nth-order truncated Chebyshev 
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series (10) with Chebyshev coefficients Sk given by 

2M 
(63) S k =2(Dk = ak - k EAj sin(kaj), k = 1,~ 2, .. 

j=l 

and Co = o= a0. This completes the reconstruction of the given discontinu- 
ous function u(x) of the form (41). 

5. NUMERICAL RESULTS 

The implementation of the algorithms described in the preceding sections has 
not involved special difficulties. We have utilized LINPACK subroutines [5] in 
order to solve the occurring linear systems of algebraic equations, including the 
least squares problems. For the determination of the discontinuity locations, the 
roots of the governing polynomials (20), (55), (61), etc. have been calculated by 
the Laguerre method, where we have been able to use the subroutines provided 
in [1 5]. We have found the routines applied both accurate and efficient. The 
only modification we found profitable in addition to converting the Laguerre 
routines from [15] to double precision and changing the tolerances accordingly, 
was to change the default starting guess for the roots when solving (20). The 
reason for this is simply that the roots of (20) which we are concerned with, 
are lying on, or close to, the unit circle in the complex plane, hence the default 
starting guess 0 does not give priority to any of the actual roots of (20), and is 
therefore not suitable in our case. 

When the considered function is a linear combination of a set of step func- 
tions (14) obtained for different values of the parameter ,6, the reconstruction 
of the function from its Fourier coefficients by the method described in ?3 
should according to the given theory be exact. This is confirmed by our numer- 
ical experiments where such functions have been reconstructed with essentially 
machine accuracy. In particular, for piecewise constant functions, we have 
found in our double-precision PC-calculations (53 bits) that in absolute value, 
the error in the calculated discontinuity locations usually is less than 10-14 and 
that the error in the calculated jumps usually is less than 10-13. 

Often the accuracy is better than the figures stated above, and in a few cases 
which we are going to look at in more detail below, the accuracy is less favor- 
able. The change in accuracy of the calculated discontinuity locations which we 
have observed when we increase the number of discontinuities in each period, 
M, has been very modest (we have considered up to 30 discontinuities in each 
period). A slight decrease in accuracy of the reconstructed function can be ob- 
served, however, when the jumps of the function at the various discontinuity 
locations are several orders of magnitude different in size. We have also ob- 
served a slight decrease in accuracy of the calculated jumps when we increase 
the number of terms in the truncated Fourier series, N, while the accuracy of 
the calculated discontinuity locations in that case seems less affected. 

The only situation where we have found significant changes in the accuracy 
for the reconstruction of piecewise constant functions, is when we have clus- 
tering of the discontinuity locations. In fact, when two or more discontinuities 
are located too close to each other, the errors introduced by the reconstruction 
can be much larger than the figures mentioned above. If, for example, for the 
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case N = 128 and M up to 30, we consider functions where the distance be- 
tween two of the discontinuities is only 0.0001, while the other discontinuity 
locations are more evenly distributed, we have found that in absolute value the 
error in the calculated clustered discontinuity locations typically can be 10-7, 
while the accuracy of the other discontinuities is not seriously affected. In some 
cases where the other discontinuity locations are far from evenly distributed, 
we have found that the calculated discontinuity locations may become even less 
accurate. If, for example, we let three of the discontinuities be clustered with 
distance 0.001, the clustered discontinuities are often not accurately recovered 
at all in our calculations. Clearly, it is the precision employed in the calculations 
which is the important limiting factor here. It is interesting to note, however, 
that even in the latter cases we have not observed any drastic change in accuracy 
for the other, unclustered discontinuities, neither for the calculated locations, 
nor for the calculated jumps. 

If we now turn to periodic functions which can be expressed as the sum of a 
smooth function and a piecewise constant function, our expectations of spectral 
accuracy for the reconstruction described in ?3 is confirmed by our numerical 
calculations; i.e., the error decays faster than any power of N-1 as N increases. 
As an illustration, we shall consider the function 

(64) f(x) = p(x) + 5-4cosx' 

where p(x) is a piecewise constant function. We shall consider two different 
examples; in case (I) we let p(x) be the 27r-periodic extension of the following 
function with three discontinuities in each period: 

(0 if 0.0 <x <1, 

j2 if 1.0 <x <2.5, 
(65) p(x) = 

-1 if 2.5 <x <3.0, 

1O if 3.0<x<27t, 

and in case (II) we let p(x) be the 2ir-periodic extension of the following 
function with seven discontinuities in each period: 

0 if 0.0<x<l.0, 

2 if l.0<x<2.5, 

-1 if 2.5<x<3.0, 

1 if 3.0<x<4.0, 
(66) p(x) = 

-1 if 4.0<x<4.7, 

-2 if 4.7<x<5.0, 

-1 if 5.0<x<5.4, 

0 if 5.4<x<2,2. 
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The absolute value of the largest error in the calculated discontinuity loca- 
tions and the associated jumps for different values of N were in our numerical 
calculations found to be as follows for these two cases: 

N 32 64 J 128 256 

Location-error (I) 0.158 0.733 10-5 0.266. 10-14 0.311 .10-14 

Jump-error (I) 1.48 0.159 10-4 0.124. 10-13 0.107. 10-13 

Location-error (II) 1.50 0.00479 0.316 10-11 0.808. 10-13 

Jump-error (II) 5.00 0.0131 0.613. 1O-1 0.270 .O-12 

The spectral accuracy for the described method of reconstruction should be 
quite evident from the above table. Clearly, roundoff errors are becoming dom- 
inant for the largest values of N shown for the considered functions (64). 

Finally, let us consider the least favorable case where also the derivative of the 
function in question has jumps at the discontinuity locations. The accuracy we 
can expect for the reconstruction described in ?3 for that case can be illustrated 
by considering the 27r-periodic extension of the following piecewise polynomial 
function with five discontinuities in each period: 

2+x-4x2 if 1.0<x< 1.5, 

-5+x+x2 if 1.5<x<2.5, 

(67) f(x)= 2 - 3x + 2x2 if 2.5 < x < 3.5, 

1-2x+x2 if 3.5<x<5.0, 

40+x-x2 if 5.0<x<2ir+ 1.0. 

The absolute value of the largest error in the calculated discontinuity locations 
and the associated jumps for the function (67) for different values of N were 
found to be as follows: 

N 1 321 64 1 1281 256 512 l 
Location-error 0.0764 0.00581 0.00123 0.000320 0.0000677 

Jump-error 1.49 0.153 0.0315 0.00846 0.00168 

2r/N I 0.196 j 0.0982 T 0.0491 0.0245 j 0.0123 

The results given for the function (67) in the above table could be regarded as 
representative for the many functions we have looked at of this type. Often more 
accurate results are obtained for the lowest values of N, and in a few cases with 
large variations in jump-sizes and/or clustering of discontinuity locations, we 
have seen less favorable results. For the largest values of N the above results 
are representative for all cases we have looked at except those with extreme 
clustering of discontinuity locations. For comparison we have in the table also 
given the corresponding spacing 27r/N between neighboring collocation points. 
For all values of N shown, we see that the locations of the discontinuities 
are determined with subgrid accuracy. Since this is an example of the least 
favorable case for the method described in ?3, it should be fair to conclude 
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that the method is quite accurate. Even without caring about optimization of 
the code, our calculations for the most time-consuming reconstructions we have 
looked at (AM = 30, N = 1024) are done in a matter of seconds on a PC; it 
should therefore also be fair to conclude that the method is efficient. 

Although our numerical experiments for the Chebyshev case have been less 
extensive than for the Fourier case, the algorithms described in ?4 for the recon- 
struction of discontinuous functions from their truncated Chebyshev expansions 
have been seen to give completely analogous numerical results in all cases we 
have looked at. We therefore strongly believe that the numerical results we have 
presented above for the Fourier case also are representative for the Chebyshev 
case. We shall therefore not consider further numerical results here. 

6. DIscusSION 

We have in this paper studied properties of truncated Fourier series expan- 
sions for discontinuous 2xr-periodic functions, and truncated Chebyshev se- 
ries expansions for discontinuous nonperiodic functions defined on the interval 
[-1, 1]. In both cases we have found that it is possible to construct an al- 
gebraic equation of degree M for the M locations of the discontinuities in 
one period for a periodic function, and in the interval (-1, 1) for a nonperi- 
odic function. The M coefficients in that algebraic equation of degree M are 
obtained by solving a linear algebraic system of equations determined by the 
coefficients in the known truncated expansion. By solving an additional linear 
algebraic system of equations for the M jumps of the function at the calculated 
discontinuity locations, we are able to reconstruct the discontinuous function 
as a linear combination of step functions and a continuous function. 

In the described reconstruction of discontinuous functions, the number of 
discontinuities, M, has been assumed to be known. For some applications, 
however, M may not be known a priori, and therefore has to be determined 
as part of the reconstruction. For such cases the described algorithms give us 
several options for actually determining the correct number M. In fact, if for 
the Fourier case we pick a possible trial number, M say, of discontinuities in 
each period and then try by the described algorithm to look for the coefficients 
in the corresponding algebraic equation (20) of degree Al for the locations 
of those discontinuities, the exact linear system of Ml equations (21) will be 
linearly dependent if Al is larger than the actual number of discontinuities 
M. Thus the determinant of the matrix in the approximate system (28) will 
be close to zero for such cases. If the trial number A on the other hand is 
smaller than M, we may by the described algorithms be able to calculate the 
roots z1, ..., zM of the corresponding algebraic equation (20) of degree Al 
for the locations of those discontinuities. For such cases, however, the modulus 
of those roots Ij z, ... , I zI will most likely be far away from 1 (at least one 
of them will probably always be clearly different from 1). Analogous observa- 
tions can be made for the Chebyshev case; it therefore seems relatively simple to 
design algorithms for the determination of the actual number of discontinuities 
M from the known truncated series expansion in cases where it is not known 
a priori. The design of the most efficient algorithm for that purpose will clearly 
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depend on what additional information can be inferred from the actual appli- 
cation considered. We would also like to remark that further details on possible 
algorithms for the determination of the correct number of discontinuities M 
can be inferred from the discussion given in [14]. 

The accuracy and rate of convergence for the described reconstruction of the 
discontinuous function depends primarily on the smoothness of the continuous 
part of the reconstructed function. That continuous part is necessarily piece- 
wise smooth by the introduced assumptions, but not necessarily more regular 
than that in general. If the continuous part is smooth, the reconstruction has 
been found to actually involve subgrid modelling of spectral accuracy as the 
number of terms N - oc . On the extreme other hand, if the derivative of the 
continuous part of the reconstructed discontinuous function is discontinuous, 
we cannot expect the method of reconstruction to be better than of the order 
O(N- l) as N - oc . In our numerical experiments for the latter case, however, 
we have found that the locations of the discontinuities typically are determined 
with an accuracy of the order O(N-2), which for N sufficiently large is clearly 
better than just somewhere between two adjacent nodes. 

As indicated above, the accuracy of the described method of reconstruction 
of discontinuous functions is least favorable when the continuous part of the re- 
constructed discontinuous function is not continuously differentiable. For such 
cases it is possible to improve upon the accuracy by utilizing not only step func- 
tions, but additional classes of special functions in the reconstruction, as briefly 
indicated in [3]. Although such modified reconstructions can be obtained by 
algorithms of a similar structure as those described in the present paper, the 
computations involved will be more expensive. For applications where the im- 
provement in accuracy can account for the extra cost in the calculations, how- 
ever, such modified, more accurate, reconstructions can be useful. We therefore 
intend to discuss such modified reconstructions in more detail in a follow-up 
paper in the near future. 
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